On (anti-)multiplicative generalized derivations
نویسندگان
چکیده
منابع مشابه
On (anti-)multiplicative Generalized Derivations
Let R be a semiprime ring and let F, f : R → R be (not necessarily additive) maps satisfying F (xy) = F (x)y + xf(y) for all x, y ∈ R. Suppose that there are integers m and n such that F (uv) = mF (u)F (v) + nF (v)F (u) for all u, v in some nonzero ideal I of R. Under some mild assumptions on R, we prove that there exists c ∈ C(I) such that c = (m + n)c2, nc[I, I] = 0 and F (x) = cx for all x ∈...
متن کاملGeneralized Derivations on Modules *
Let A be a Banach algebra and M be a Banach left A-module. A linear map δ : M → M is called a generalized derivation if there exists a derivation d : A → A such that δ(ax) = aδ(x) + d(a)x (a ∈ A,x ∈ M). In this paper, we associate a triangular Banach algebra T to Banach A-module M and investigate the relation between generalized derivations on M and derivations on T . In particular, we prove th...
متن کاملMODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS
Let $A_1$, $A_2$ be unital Banach algebras and $X$ be an $A_1$-$A_2$- module. Applying the concept of module maps, (inner) modulegeneralized derivations and generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $A_i$ into the dual space $A^*_i$ (for$i=1,2$) and such derivations from the triangular Banach algebraof t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik matematicki
سال: 2012
ISSN: 0017-095X
DOI: 10.3336/gm.47.1.08